Emil Panek
ARTICLE

(Polish) PDF

ABSTRACT

This article is part of a trend of few works of mathematical economics containing proofs of the so-called turnpike theorems in the non-stationary Neumann-Gale economies. Using the idea of the proof of theorem 5 in the article Panek (2013b) the intermediate version was proven, that stands between the “strong” and the “very strony” turnpike theorem in the non-stationary Gale economy. It states that if in the non-stationary Gale’s economy the optimal growth process in a certain period of time reaches the turnpike and the (von Neumann) prices do not change to abruptly, than irrespectively of the length of the horizon, such a process for all subsequent periods (except for perhaps the final time) can be found in the turnpike’s proximity.

KEYWORDS

non-stationary Gale economy, production set, technological and economic production efficiency, von Neumanna equilibrium, production turnpike

REFERENCES

Czeremnych J. N., (1982), Analiz powiedienija trajektorii dynamiki narodnochoziajstwiennych modeliej, Nauka, Moskwa.

Gantz D., (1980), A Strong Turnpike Theorem for a Nonstationary von Neumann-Gale Production Model, Econometrica, 48 (7), 1977-90.

Joshi S., (1997), Turnpike Theorems in Nonconvex Nonstationary Envirenments, International Economic Review, 38 (1), 225-248.

Keeler E. B., (1972), A Twisted Turnpike, International Economic Review, 13 (1), 160-166.

Panek E., (2003), Ekonomia matematyczna, Wyd. AEP, Poznań.

Panek E., (2013a), Niestacjonarny model von Neumanna z graniczną technologią, Studia Oecnomica Posnaniensia, 1 (1), 49-68.

Panek E., (2013b), „Słaby” i ”bardzo silny” efekt magistrali w niestacjonarnej gospodarce Gale’a z graniczną technologią, Przegląd Statystyczny, 60 (3), 291-303.

Panek E., (2014), Niestacjonarna gospodarka Gale’a z rosnącą efektywnością produkcji na magistrali, Przegląd Statystyczny, 61 (1), 6-15.

Takayama A., (1985), Mathematical Economics, Cambrige Univ. Press, Cambridge.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0